AMS Bianka Model (Sets 01 11) Rar Rar !EXCLUSIVE!
This study investigated the relationships among a list of 23 protein biomarkers with CIE-L*a*b* meat color traits and ultimate pH on Longissimus thoracis (LT) and Rectus abdominis (RA) muscles of 48 protected designation of origin Maine-Anjou cows. The technological parameters were correlated with several biomarkers and were in some cases muscle-dependent. More biomarkers were related to pHu in LT than in RA muscle. Some consistencies were found, by the common correlation of pHu with MyHC-IIa and MyHC-IIx. The pHu of the LT muscle was also correlated with other cytoskeletal entities and proteins belonging to metabolism and cellular stress. In contrast to the relationships found between biomarkers and LT pHu, more proteins were related to the instrumental color coordinates in RA than in LT muscle. The regression equations were parameter- and muscle-dependent. Certain of the retained proteins explained more than one color coordinate. Hsp70-Grp75 was positive in the models of L*, a*, b*, and C* of LT and of b* in the RA muscle. Further heat shock proteins were strongly related with the meat color coordinates in both muscles. The involvement of metabolic enzymes and myofibrillar proteins in the meat color development was also verified in this experiment. This study confirmed once again the importance of numerous biological pathways in beef color.
AMS Bianka Model (Sets 01 11) rar rar
Ever since its introduction, the transverse rectus abdominis myocutaneous flap has become the mainstay of autologous breast reconstruction. However, concerns regarding donor site morbidity due to the breach of abdominal wall musculature integrity soon followed. Muscle-sparing techniques, eventually eliminating the muscle from the flap all-together with the deep inferior epigastric artery perforator flap, did not eliminate the problem of abdominal wall weakness. This led to the conclusion that motor innervation might be at fault. Studies have shown that even in the presence of an intact rectus abdominis muscle, and an intact anterior rectus sheath, denervation of the rectus abdominis muscle results in significant abdominal wall weakness leading to superior and inferior abdominal bulges, and abdominal herniation. Our aim was to establish a mathematical model to predict the location of the motor innervation to the rectus abdominis muscle, and thus provide surgeons with a tool that will allow them to reduce abdominal morbidity during deep inferior epigastric artery perforator and free muscle-sparing transverse rectus abdominis myocutaneous surgery. We dissected 42 cadaveric hemiabdomens and mapped the course of the thoracolumbar nerves. We then standardized and analyzed our findings and presented them as a relative map which can be adjusted to body type and dimensions. Our dissections show that the motor innervation is closely related to the lateral vascular supply. Thus, when possible, we support the preferred utilization of the medial vascular supply, and the preservation of the lateral supply and motor innervation.
This study was conducted to quantify the normalized amplitudes of the abdominal wall and back extensor musculature during a variety of push-up styles. We also sought to quantify their impact on spinal loading by calculating spinal compression and torque generation in the L4-5 area. Ten university-age participants, nine males and one female, in good to excellent condition, volunteered to participate in this study. All participants were requested to perform a maximum of 12 different push-up exercises, three trials per exercise. Surface electromyographic data (EMG) were collected bilaterally on rectus abdominis, external oblique, internal oblique, latissimus dorsi, and erector spinae muscles, and unilaterally (right side) on pectoralis major, triceps brachii, biceps brachii, and anterior deltoid muscles. Spine kinetics were obtained using an anatomically detailed model of the torso/spine. This study revealed that more dynamic push-ups (i.e., ballistic, with hand movement) required more muscle activation and higher spine load, whereas placing labile balls under the hands only resulted in modest increases in spine load. Right rectus abdominis (RA) activation was significantly higher than left RA activation during the left hand forward push-up and vice versa for the right hand forward push-up (P
The aim of this study is to evaluate the efficacy and feasibility of three-dimensional printing (3D printing) assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach. A total of 38 patients with unstable pelvic fractures were analyzed retrospectively from August 2012 to February 2014. All cases were treated operatively with internal fixation assisted by three-dimensional printing from minimal invasive para-rectus abdominis approach. Both preoperative CT and three-dimensional reconstruction were performed. Pelvic model was created by 3D printing. Data including the best entry points, plate position and direction and length of screw were obtained from simulated operation based on 3D printing pelvic model. The diaplasis and internal fixation were performed by minimal invasive para-rectus abdominis approach according to the optimized dada in real surgical procedure. Matta and Majeed score were used to evaluate currative effects after operation. According to the Matta standard, the outcome of the diaplasis achieved 97.37% with excellent and good. Majeed assessment showed 94.4% with excellent and good. The imageological examination showed consistency of internal fixation and simulated operation. The mean operation time was 110 minutes, mean intraoperative blood loss 320 ml, and mean incision length 6.5 cm. All patients have achieved clinical healing, with mean healing time of 8 weeks. Three-dimensional printing assisted internal fixation of unstable pelvic fracture from minimal invasive para-rectus abdominis approach is feasible and effective. This method has the advantages of trauma minimally, bleeding less, healing rapidly and satisfactory reduction, and worthwhile for spreading in clinical practice.
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50
Crude oil terminal sludge contains technologically enhanced naturally occurring radionuclides such as (232)Th, (238)U, (228)Ra and (226)Ra, thus cannot be disposed of freely without proper control. The current method of disposal, such as land farming and storing in plastic drums is not recommended because it will have a long-term impact on the environment. Due to its organic nature, there is a move to treat this sludge by thermal methods such as incineration. This study has been carried out to determine the behaviors of (232)Th, (238)U, (228)Ra and (226)Ra present in the sludge during combustion at a certain temperature and time. The percentage of volatilization was found to vary between 2% and 70%, (238)U was the most volatile in comparison with (232)Th, (228)Ra and (226)Ra. (238)U is found to be significantly volatilized above 500 degrees C, and might reach maximum volatilization at above 700 degrees C. A mathematical model was developed to predict the percentage of volatilization of (232)Th, (238)U, (228)Ra and (226)Ra contained in the sludge. With this known percentage of volatilization, the concentration of (232)Th, (238)U, (228)Ra and (226)Ra present in the bottom and filter ashes can be calculated.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600??y) and 228Ra (t1/2 = 5.75??y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith-Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12-83??dpm 100??L- 1 (60??dpm = 1??Bq) and 21-256??dpm 100??L- 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16-736??dpm 100??L- 1 (2002-2003) and 95-815??dpm 100??L- 1 (2005), while porewater 228Ra activities ranged from 23-1265??dpm 100??L- 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11-159??L m- 2 d- 1 and average 228Ra-derived fluxes of 15-259??L m- 2 d- 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30-472??L m- 2 d- 1 (Winnapaug Pond), 6-20??L m- 2 d- 1 (Quonochontaug Pond), 36-273??L m- 2 d- 1 (Ninigret Pond), 29-76??L m- 2 d- 1 (Green Hill Pond), and 19-83??L m- 2 d- 1 (Pt. Judith-Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity. ?? 2007 Elsevier B.V. All rights reserved.